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Abstract. We study dynamics of spread of epidemics of SIR type in a realistic spatially-explicit geo-
graphical region, Southern and Central Ontario, using census data obtained from Statistics Canada, and
examine the role of population mixing in epidemic processes. Our model incorporates the random nature
of disease transmission, the discreteness and heterogeneity of distribution of host population.We find that
introduction of a long-range interaction destroys spatial correlations very easily if neighbourhood sizes are
homogeneous. For inhomogeneous neighbourhoods, very strong long-range coupling is required to achieve
a similar effect. Our work applies to the spread of influenza during a single season.

PACS. 87.15.Aa Theory and modeling; computer simulation – 89.75.-k Complex systems – 05.10.-a
Computational methods in statistical physics and nonlinear dynamics – 02.70.-c Computational
techniques; simulations

1 Introduction

Studies of some epidemics, for example, the spread of the
Black Death in Europe from 1347–1350 [1], the past in-
fluenza pandemics [2], spread of fox rabies in Europe, or
spread of rabies among raccoons in eastern United States
and Canada [3], indicate that host and infective interac-
tions and spatial distributions of their populations should
play an important role in the dynamics of spread of many
infectious diseases.

Until recently most mathematical models of spread of
epidemics have described interactions of large number of
individuals in aggregate form and often these models have
neglected aspects of spatial distribution of populations,
importance of which have been addressed in [4]. Adopting
methodologies like cellular automata, coupled map lat-
tices, lattice gas cellular automata or agent based sim-
ulations, new classes of models have been proposed and
studied [5–11], to incorporate with various levels of ab-
straction and details: direct interactions among individ-
uals; spatial distribution of population types (i.e., infec-
tive, susceptible, removed); individuals’ movement; effects
of social networks on spread of epidemics.

The goal of our work is to study the effects of popu-
lation interactions and mixing on the spatio-temporal dy-
namics of spread of epidemics of SIR (susceptible-infected-
removed) type in a realistic population distribution. For
the purpose of our study we developed a fully discrete
individually-based simulation model that incorporates the
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random nature of disease transmission. The key feature of
this model is the fact that for each individual the set of all
individuals with whom he/she interacts may change with
time. This results in time varying network structure with
short range and long range interactions. For a brief review
on spread of epidemics on networks see [12].

For the population distribution, we used census data
obtained from Statistic Canada [13,14] for Southern and
Central Ontario. The data set specifies population of small
areas composed of one or more neighbouring street blocks,
called “dissemination areas”. Using these data its realis-
tic representation on the map of Southern and Central
Ontario we study the effects of two types of interactions
among individuals on the spread of epidemics. The first
type of interaction is the one among individuals located
only in adjacent dissemination areas. The second type of
interaction is the one among individuals who in addition to
being in contact with members of their own and adjacent
dissemination areas may also be in contact with individu-
als located in remote, non adjacent, dissemination areas.
This last case can be seen as a case of “short-cuts” among
multiple far away dissemination areas. It was introduced
to model the effects of population mixing as a result of per-
vasive commuting in Southern and Central Ontario, where
on daily basis large number of commuters travel large dis-
tances. For example, the Greater Toronto Area consists of
24 municipalities with more than 5.5 million daily com-
muters. Using the developed model we investigate spatial
correlations and how they can be destroyed by the “short-
cuts” in population contacts. Additionally, we derive a
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mean field description of our individually-based simula-
tion model and compare the results of the two models.

The presented work is continuation and expansion of
our work in [5,6,8] and contributes to better understand-
ing of spread of epidemics of SIR type, including influenza.

2 SIR epidemic model description

In order to study how population interactions (“popula-
tion mixing”) affects the spread of epidemics we construct
an individually-based model in which each individual is
represented by a particle, as in our earlier work [5,6]. Mod-
els of this type take various forms, ranging from stochastic
interacting particle systems [4] to models based on cellular
automata or coupled map lattices [7,15–17].

In our model, we consider a set of N individuals, la-
belled with consecutive integers 1, 2 . . . , N . This set of la-
bels is denoted by L. We assume that each individual,
at any given time can be in one of three, mutually ex-
clusive, distinct states: susceptible (S), infected (I) or re-
moved (R). An individual can change state only in two
ways: a susceptible individual who comes in direct con-
tact with an infected individual can become infected with
probability p; an infected individual can become removed
with probability q. The precise description of the model is
as follows.

The state of the ith individual at the time step k is
described by a Boolean vector variable

η(i, k) = 〈ηS(i, k), ηI(i, k), ηR(i, k)〉 (1)

where ητ (i, k) = 1 if the ith individual is in the state τ ,
where τ ∈ {S, I, R}, and ητ (i, k) = 0 otherwise. Thus,

ηS(i, k) ⊕ ηI(i, k) ⊕ ηR(i, k) = 1.

We assume that i = 1, 2, . . . , N and k ∈ N, that is, the
time is discrete. Hence, the only allowed values of the vec-
tor η(i, k) are

η(i, k) =

⎧
⎨

⎩

〈1, 0, 0〉, if the ith individual’s state ∈ S,
〈0, 1, 0〉, if the ith individual’s state ∈ I,
〈0, 0, 1〉, if the ith individual’s state ∈ R.

No other values of η(i, k) are possible in SIR epidemic
model. In SIR model an individual can only be at one state
at any give time and transitions occur only from suscepti-
ble to infected and from infected to removed. A removed
individual does not become susceptible or infected again
in SIR model. Therefore, SIR model is suitable for study-
ing spread of influenza in the same season because the
same type of influenza virus can infect an individual only
once and once the individual is recovered from the flu it
becomes immune to this type of virus.

We further assume that at time step k the ith individ-
ual can interact with individuals from a subset of L, to
be denoted by C(i, k). Using this notation, after one time

iteration the ητ (i, k + 1) becomes

ηS(i, k + 1) = ηS(i, k)
∏

j∈C(i,k)

(1 − Xi,j,kηI(j, k)), (2)

ηI(i, k + 1) = ηS(i, k)

⎛

⎝1 −
∏

j∈C(i,k)

(1 − Xi,j,kηI(j, k))

⎞

⎠

+ηI(i, k)(1 − Yi,k), (3)
ηR(i, k + 1) = ηR(i, k) + ηI(i, k)Yi, (4)

where X = {Xi,j,k : i, j = 1, ..., N and k = 1, 2, ....}
is a sequence of iid Boolean random variables such that
Pr(Xi,j,k = 1) = p, Pr(Xi,j,k = 0) = 1 − p, and
Y = {Yi,k : i = 1, ..., N, and k = 1, 2, ...} is a sequence of
iid Boolean variables such that Pr(Yi = 1) = q, Pr(Yi =
0) = 1 − q. We assume that the sequences X and Y of
random variables are independent of each other and of
the random variables ητ (i, k).

Observe that, if the ith individual interacts with an
infected jth individual at time step k and Xi,j,k = 1,
then the infection is transmitted from the jth individual
to the ith individual at this time step. Thus, if some prod-
uct Xi,j,kηI(j, k) takes the value 1, then ηS(i, k + 1) = 0,
meaning that the ith individual has changed its state from
susceptible to infected.

The key feature of this model is the set C(i, k), repre-
senting all individuals with whom the ith individual may
have interacted at time step k. In a large human popula-
tion, it is almost impossible to know C(i, k) for each in-
dividual, so we make some simplifying assumptions. First
of all, it is clear that the spatial distribution of individu-
als must be reflected in the structure of C(i, k). We have
decided to use realistic population distribution for South-
ern and Central Ontario using census data obtained from
Statistic Canada [13,14]. The selected region is mostly
surrounded by waters of Great Lakes, forming natural
boundary conditions. The data set specifies population
of so called “dissemination areas” , that is, small areas
composed of one or more neighbouring street blocks. We
had access to longitude and latitude data with accuracy of
roughly 0.01◦, hence some dissemination areas in densely
populated regions have the same geographical coordinates.
We combined these dissemination areas into larger units,
to be called “modified dissemination areas” (MDA).

We now define the set C(i, k) using the concept of
MDAs. This set is characterized by two positive inte-
gers nc and nf . Let us label all MDAs in the region we
are considering by integers m = 1, 2, . . . , M , where in our
case M = 5069. For the ith individual belonging to the
mth MDA, the set C(i, k) consists of all individuals be-
longing to the mth MDA plus all individuals belonging to
the nc MDAs nearest to the mth MDA and the nf MDAs
randomly selected among all remaining MDAs. While the
“close neighbours”, that is, the nc nearest MDAs, will not
change with time, the “far neighbours”, that is, the nf

randomly selected MDAs, will be randomly reselected at
each time step.



H. Fukś et al.: Effects of population mixing on the spread of SIR epidemics 211

3 Derivation of mean field equations

The model described in the previous section involves
strong spatial coupling between individuals. Before we de-
scribe consequences of this fact, we first construct a set of
equations which approximate dynamics of the model un-
der the assumption of “perfect mixing”, in other words,
neglecting the spatial coupling.

The state of the system described by equations (2)–(4)
at time step k is determined by the states of all indi-
viduals and is described by the Boolean random field
η(k) = {η(i, k) : i = 0, . . . , N}. Under the assumptions
of our model, the Boolean field {η(k) : i = 0, 1, 2 . . .} is a
Markov stochastic process.

By taking the expectation Eη(0) of this Markov
stochastic process when the initial configuration is η(0)
we get the probabilities of the ith individual being sus-
ceptible, or infected, or removed at time k, that is,

ρτ (i, k) = Eη(0) [ητ (i, k)] for τ ∈ {S, I, R}. (5)

Since the sequences of random variables X and Y are inde-
pendent of each other and of the sequences of the random
variables ητ (i, k), assuming additionally independence of
random variables ητ (i, k), the expected value of a product
of these variables is equal to the product of expected val-
ues. Under these mean field assumptions, taking expected
values of both sides of equations (2–4) we obtain

ρS(i, k + 1) = ρS(i, k)
∏

j∈C(i,k)

(1 − pρI(j, k)), (6)

ρI(i, k + 1) = ρS(i, k)
(
1 −

∏

j∈C(i,k)

(1 − pρI(j, k))
)

+ρI(i, k)(1 − q), (7)
ρR(i, k + 1) = ρR(i, k) + ρI(i, k)q. (8)

Since mean field approximations neglect spatial correla-
tions, we further assume that ρτ (i, k) is independent of i,
that is ρτ (i, k) = ρτ (k). Even though sets C(i, k) have dif-
ferent number of elements for different i and k, for the pur-
pose of this approximate derivation we assume that they
all have the same number of elements (1 + nc + nf )D,
where D is the average MDA population. All these as-
sumptions lead to

ρS(k + 1) = ρS(k)(1 − pρI(k))(1+nc+nf )D, (9)
ρI(k + 1) = ρI(k) + ρS(k)

− ρS(k)(1 − pρI(k))(1+nc+nf )D − qρI(k),
(10)

ρR(k + 1) = ρR(k) + qρI(k). (11)

The third equation in the above set is obviously redun-
dant, since ρS(k) + ρI(k) + ρR(k) = 1.

Similarly to the classical Kermack-McKendrick model,
mean field equations (9)–(11) exhibit a threshold pheno-
menon. Depending on the choice of parameters, we can
have ρI(k) < ρI(0) for all k, meaning that the infection is
not growing and eventually it will die out because in our

model no new individuals are being born or arrive from
outside the area under consideration during the time of
the epidemic. Alternatively, we can have ρI(k) > ρI(0)
for some k, meaning that the epidemic is spreading. The
intermediate scenario of constant ρI(k) will occur when
ρI(k) = ρI(0), that is, when

ρS(0) − ρS(0)(1 − pρI(0))(1+nc+nf )D − qρI(0) = 0. (12)

Assuming that initially the entire population consists only
of susceptible and infective individuals, that is, there are
no individuals in the removed group at k = 0,we have
ρS(0) = 1−ρI(0). Furthermore, if (1+nc +nf)D is large,
we can assume (1 − pρI(0))(1+nc+nf )D ≈ 1 − p(1 + nc +
nf)DρI(0). Solving equation (12) for q under these as-
sumptions we obtain

q =
(
1 − ρI(0)

)
(1 + nc + nf )Dp. (13)

Thus, assuming the mean field approximation the epi-
demic can occur only if q < (1 − ρI(0))(1 + nc + nf)Dp.

4 Spatio-temporal dynamics of SIR epidemic
model

The mean-field equations derived in the previous section
depend only on the sum of nc and nf . This means, for ex-
ample, that the model with nc = 12, nf = 0 and the model
with nc = 11, nf = 1 will have the same mean field equa-
tions. However, the actual dynamics in these two cases
are very different, see Figures 2 and 4. Depending on the
relative size of nf and nc, the epidemic may propagate or
die out, as the following analysis shows. In order to make
the subsequent analysis more convenient, we introduce pa-
rameter γ, defined as

γ =
nf

nc + nf
. (14)

Let Nτ (k) be the expected value of the total number of
individuals belonging to class τ ∈ {S, I, R}, that is,

Nτ (k) = Eη(0)

(
N∑

i=1

ητ (i, k))

)

=
N∑

i=1

ρτ (i, k).

We say that an epidemic occurs if there exists k > 0 such
that NI(k) > NI(0). For fixed p, nf and nc, there exists
a threshold value of q to be denoted by qc, such that for
each q < qc an epidemic occurs, and for q > qc it does
not occur. Obviously qc depends on p, and this is illus-
trated in Figure 1, which shows graphs of qc as a function
of p for several different values of γ, where nf + nc = 12.
The graphs were obtained numerically by direct computer
simulations of the model. The condition nf + nc = 12
means that the size of the neighbourhood is kept constant,
but the proportion of “far neighbours” (represented by γ)
varies. Figure 1 also shows the mean-field line given by
equation (13). The difference between mean-field line and
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Fig. 1. Graphs of critical lines for γ = 0.42, 0.75, 0.92, and 1.0.
The first line from the bottom represents mean field approxi-
mation.

the graph when γ = 1 results from the fact that the equa-
tion (13) was derived using various approximations, and
that, in the case of γ = 1, all interactions are only long
range interactions.

We observe that the parameter γ controls dynamics
of the epidemic process in a significant way, shifting the
critical line up or down. When γ = 0, that is, when there
are no interactions with “far neighbours”, the epidemic
process has a strictly local nature, and we can observe
well defined epidemic fronts propagating in space, regard-
less at which MDA the epidemic starts at k = 0. This
is illustrated in Figure 2, where the epidemic starts at a
single centrally located MDA with low population density
(Fig. 2a) and in Figure 3, where the epidemic starts in a
MDA with high population density (Fig. 3a). The simula-
tions were done for the same parameters in both cases ex-
cept for the different locations of the onsets of epidemics.
The figures display MDAs that are represented by pixels
coloured according to the density of individuals of a given
type. The red component of the color represents density
of infected individuals, green density of susceptible ones,
and blue density of removed individuals. By density we
mean the number of individuals of a given type divided
by the size of the population of the MDA. The epidemic
waves propagating outwards can be clearly seen in Fig-
ures 2 and 3, in the successive snapshots (b), (c) and (d).
The fronts are mostly red. This means that the bulk of
infected individuals is located at the fronts. After these
individuals gradually recover the centers become blue.

Let us now consider slightly modified parameters, tak-
ing γ = 1

12 . This means that we now replace one “close”
MDA by one “far” MDA. This does not seem to be a
significant change, yet the effect of this change is truly
noticeable. As we can see in Figure 4, the epidemic prop-
agates much faster, and there are no visible fronts. The
disease quickly spreads over the entire region and large
metropolitan areas become red in a short time, as shown
in Figure 4b. This suggests that infected individuals are
more likely to be found in densely populated regions, and
their distribution is dictated by the population distribu-

Fig. 2. Example of a propagating epidemic front for γ = 0,
p = 0.00005, q = 0.05, with (a) k = 0, (b) k = 40, (c) k = 60
and (d) k = 80. The initial outbreak is located in an area with
low population density. Modified dissemination areas are rep-
resented by pixels coloured according to density of individuals
of a given type, such that the red component represents density
of infected, green density of susceptible ones, and blue density
of removed individuals.

tion — unlike in Figures 2 or 3, where infected individuals
are to be found mainly at the propagating front.

5 Spatial correlations of SIR epidemic model

In order to quantify the observations of the previous sec-
tion, we use a spatial correlation function for densities of
infected individuals. Spatial correlation at a distance r
and at a time k is defined as

h(r, k) = 〈ηI(i, k)ηI(j, k)〉r≤d(i,j)≤r+∆r ,

where d(i, j) is the distance between ith and jth individ-
ual, and 〈·〉 represents averaging over all pairs i, j sat-
isfying condition r ≤ d(i, j) ≤ r + ∆r. In the following
considerations we take ∆r = 1 km. The distance between
two individuals is defined as the distance between MDAs
to which they belong.

Consider now a specific example of the epidemic pro-
cess described by equations (2)–(4), where p = 0.000015,
q = 0.2, and nc + nf = 12. For this choice of parame-
ters epidemics always occur as long as γ > 0. Figure 5
shows graphs of the correlation functions h(r, kmax) at
the peak of each epidemic, so that kmax is the time step
at which the number of infected individuals achieves its
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Fig. 3. Example of a propagating epidemic front parameters
identical as in Figure 2, except that the initial outbreak is now
located in an area with high population density. Color coding
like in the previous figure.

Fig. 4. Development of the epidemic for γ = 1
12

, p = 0.00005,
q = 0.05, with (a) k = 0, (b) k = 15, (c) k = 30 and (d) k = 60.
Colour coding is the same as in the previous figure.
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Fig. 5. Graphs of the correlation function h(r, kmax) for differ-
ent values of γ, where p = 0.000015, q = 0.2, and nc +nf = 12.
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Fig. 6. Values of the exponent α for different values of
the parameter γ. The exponent has been obtained by fitting
h(r, kmax) = Crα to simulation data.

maximum value. An interesting phenomenon can be ob-
served in the figure under consideration: while the in-
crease of the proportion of “far” neighbours does destroy
spatial correlations, one needs very high proportion of
“far”neighbours to make the correlation curve completely
flat. In [18] it is reported that for influenza epidemics
h(r, kmax) ∼ r0.04±0.03. If we fit h(r, kmax) = Crα curve to
the correlation data shown in Figure 5, we obtain values
of the exponent α as shown in Figure 6. In order to ob-
tain α of comparably small magnitude as reported in [18],
one would have to take γ equal to at least 0.83, meaning
that vast majority of neighbours would have to be “far
neighbours”. In reality, this would require that the vast
majority of all individuals one interacted with were not
his/her neighbours, coworkers, etc., but individuals from
randomly selected and possibly remote geographical re-
gions. This is clearly at odds with our intuition regarding
social interactions, especially outside large metropolitan
areas. This prompted us to investigate further and to find
out what is responsible for this effect.

Upon closer examination of spatial patterns generated
in simulations of our individually-based model, we reach
the conclusion that the inhomogeneity of population sizes
in neighbourhoods C(i, k) makes spatial correlations so
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persistent. Since different MDAs have different popula-
tion sizes, we expect that some individuals will have larger
neighbourhood populations than others, and as a result
they will be more likely to get infected, even if the pro-
portion of infected individuals is the same in all MDAs.
This will build up clusters of infected individuals around
populous MDAs.

To test if this is indeed the factor responsible for strong
spatial correlations in our model, we replaced all MDA
population sizes with a constant population size D, that
is, the average MDA population size. As expected, graphs
of the correlation functions obtained in this case were are
all essentially flat, with the exponent α close to zero even
in the case of nf = 1, when we obtained α = 0.023±0.002.

6 Conclusions

The paper introduces a fully discrete individually-based
simulation model of epidemics of SIR type. The model in-
corporates the random nature of disease transmission and
it is applied to study spatio-temporal dynamics of spread
of SIR epidemic in realistic spatial population distribution
of Southern and Central Ontario. The simulation results
are represented in the realistic map of the region. The de-
veloped model can be applied to other realistic population
distributions and geographical regions and can be easily
extended to study other types of epidemics. The deriva-
tion of a mean field description of the individually-based
simulation model is provided and the simulation results
obtained by these two models are analyzed and compared.
Based on them, we conclude that spatial correlations are
difficult to destroy if neighbourhood sizes are inhomoge-
neous. Very significant amount of long-range interactions
(i.e., very strong mixings) is required to obtain flat corre-
lations curves. However, for homogeneous neighbourhood
sizes, even relatively small long-range interaction imme-
diately forces the process into the perfect-mixing regime,
resulting in the lack of spatial correlations. As a future
work it would be interesting to compare the stochastic as-
pects of the introduced model with those of the epidemic
models based on stochastic differential equations, in par-
ticular in the context of the approach of [19,20].
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nancial support from the Natural Science and Engineering Re-
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8. H. Fukś, R. Duchesne, A. Lawniczak, Spatial correlations
in SIR epidemic models, in Proceeding of 7th WSEAS
International Conference on Applied Mathematics, Canun,
Mexico, May 11–14 2005 (2005), pp. 108–113, e-print
arXiv:nlin.CG/0505044

9. D.J. Watts, Six Degrees: The Science of a Connected Age
(W. W. Norton, 2004)

10. C.L. Barrett, S.G. Eubank, J.P. Smith, Scientific American
292, 54 (2005)

11. D. Valenti, A. Fiasconaro, B. Spagnolo, Fluctuation and
Noise Lett. 5, L337 (2005)

12. T. Zhou, Z.Q. Fu, B.H. Wang (2005), preprint,
arXiv:physics/0508096

13. Statistics Canada, Dissemination area digital cartographic
file, Statistics Canada, Geography Division, Ottawa, ON
(2001)

14. Statistics Canada, Profile of age and sex, for Canada,
provinces, territories, census divisions, census subdivi-
sions, and dissemination areas, 2001 census (Industry
Canada, Ottawa, ON, 2001)

15. B. Schönfisch, Ph.D. thesis, Universität Tübingen (1993)
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